MATH 590: QUIZ 10 SOLUTIONS

Name:

Find the singular value decomposition of $A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ by following the steps below. You may use the fact that $p_{A^tA}(x) = x(x-2)(x-3)$. Be sure to label each step in your solution. Each step is worth 2 points.

- 1. Calculate $A^t A$.
- 2. Find the non-zero eigenvalues of $A^t A$: $\lambda_1 > \lambda_2 > 0$.
- 3. Find: (i) A unit eigenvector u_1 of λ_1 , a unit eigenvector u_2 for λ_2 and a unit vector u_3 such that u_1, u_2, u_3 is an orthonormal basis for \mathbb{R}^3 .
- 4. Set $\sigma_1 = \sqrt{\lambda_1}$, $\sigma_2 = \sqrt{\lambda_2}$, $v_1 = \frac{1}{\sigma_1}Au_1$, and $v_2 = \frac{1}{\sigma_2}Au_2$. Show that v_1, v_2 is an orthonormal basis for \mathbb{R}^2 .
- 5. Let P be the orthogonal matrix whose columns are u_1, u_2, u_3, Q the orthogonal matrix whose columns are v_1, v_2 , and $\sum = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{pmatrix}$. Verify that $A = Q \sum P^t$.

Solution. For 1:
$$A^{t}A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

For 2: The non-zero eigenvalues of $A^t A$ are: 3 > 2.

For 3:
$$E_3$$
 is the null space of $\begin{pmatrix} -1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$, so we can take $u_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.
 E_2 is the nullspace of $\begin{pmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so we can take $u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. By inspection, if we take $u_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, we have an orthonormal basis for \mathbb{R}^3 .

For 4: Direct calculation gives, $\sigma_1 = \sqrt{3}, \sigma_2 = \sqrt{2}, v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, which is clearly an orthonormal basis for \mathbb{R}^2 .

For 5: We have
$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$
, $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sum = \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$. Therefore,
 $Q \sum P^t = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}$
$$= \begin{pmatrix} 0 & \sqrt{2} & 0 \\ \sqrt{3} & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix} = A$$