MATH 590: QUIZ 10 SOLUTIONS

Name:

Find the singular value decomposition of $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right)$ by following the steps below. You may use the fact that $p_{A^{t} A}(x)=x(x-2)(x-3)$. Be sure to label each step in your solution. Each step is worth 2 points.

1. Calculate $A^{t} A$.
2. Find the non-zero eigenvalues of $A^{t} A: \lambda_{1}>\lambda_{2}>0$.
3. Find: (i) A unit eigenvector u_{1} of λ_{1}, a unit eigenvector u_{2} for λ_{2} and a unit vector u_{3} such that u_{1}, u_{2}, u_{3} is an orthonormal basis for \mathbb{R}^{3}.
4. Set $\sigma_{1}=\sqrt{\lambda_{1}}, \sigma_{2}=\sqrt{\lambda_{2}}, v_{1}=\frac{1}{\sigma_{1}} A u_{1}$, and $v_{2}=\frac{1}{\sigma_{2}} A u_{2}$. Show that v_{1}, v_{2} is an orthonormal basis for \mathbb{R}^{2}.
5. Let P be the orthogonal matrix whose columns are u_{1}, u_{2}, u_{3}, Q the orthogonal matrix whose columns are v_{1}, v_{2}, and $\sum=\left(\begin{array}{ccc}\sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0\end{array}\right)$. Verify that $A=Q \sum P^{t}$.

Solution. For 1: $A^{t} A=\left(\begin{array}{cc}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right) \cdot\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 1 & 1\end{array}\right)=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2\end{array}\right)$.
For 2: The non-zero eigenvalues of $A^{t} A$ are: $3>2$.
For 3: E_{3} is the null space of $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & -1\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right)$, so we can take $u_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
E_{2} is the nullspace of $\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & 0\end{array}\right) \xrightarrow{\text { EROs }}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, so we can take $u_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$. By inspection, if we take $u_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$, we have an orthonormal basis for \mathbb{R}^{3}.
For 4: Direct calculation gives, $\sigma_{1}=\sqrt{3}, \sigma_{2}=\sqrt{2}, v_{1}=\binom{0}{1}, v_{2}=\binom{1}{0}$, which is clearly an orthonormal basis for \mathbb{R}^{2}.
For 5: We have $P=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\end{array}\right), Q=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right), \sum=\left(\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & \sqrt{2} & 0\end{array}\right)$. Therefore,

$$
\begin{aligned}
Q \sum P^{t} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
\sqrt{3} & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 1 & 1
\end{array}\right)=A
\end{aligned}
$$

